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This paper is concerned with steady flow in collapsible tubes, such as veins, at  fairly 
low Reynolds number. Lubrication theory is used to calculate the velocity and pressure 
distribution in an elliptical tube whose cross-sectional area and eccentricity vary 
slowly and in a given way with longitudinal diPtance x. The transverse velocity field 
and the effect of inertia on the primaiy velocity and pressure distributions are calcu- 
lated to first order in the relevant small parameter. The results of these calculations are 
combined with a relationship between transmural pressure and the cross-sectional area 
at  any x which is close to that measured in (large) veins, and are used to predict the 
pressure and flow in a collapsible tube when a given distribution of external pressure is 
applied. Different relationships between the tube perimeter and cross-sectional area 
are examined. The theory is applied to an experiment in which a segment of collapsible 
tube is supported between two rigid segments, and squeezed; predictions of the rela- 
tionship between the pressure drop and flow rate are made for various experimental 
conditions. In  particular, when the resistance of the downstream rigid segment is held 
constant, a range of flow rates is found in which the pressure drop falls as the flow rate 
is raised; this agrees with experiment. 

1. Introduction 
The mean blood pressure in the systemic arteries of most mammals is about 

13 kN m-2 (100 mm Hg) above atmospheric a t  the level of the heart. As a result of the 
hydrostatic gradient, this figure is almost doubled in the arteries of the feet of an 
upright man, and reduced to about 4 kN m--2 in those of the hand if it  is held above the 
head. The pressure outside the arteries, in the tissue, is close to atmospheric (in fact 
about 0.25 kN m-2 below, see Wiederhielm (1972); pressures within the chest may vary 
by 2 3 kN m--2 as a result of respiratory manoeuvres). Thus the transmural pressure 
@tm, tending to distend the vessel, is we11 above zero for all systemic arteries. 
Experiments both within and outside the body show that the cross-sections of the 
systemic arteries are circular over this range of transmural pressures, but show 
markedly nonlinear elastic properties in that the distensibility 

D = A-%qd&,, (1.1) 

where Â  is the cross-sectional area, increases with transmural pressure. This is 
10 F L U  8 I  
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FIUURE 1 .  Comparison of the elastic properties of a latex tube with those of an excised segment of 
a canine wena cam. (a) Transmural pressure as a function of area A ,  scaled with respect to the 
area A ,  at zero transmural pressure. Transverse cross-sections are shown for various areas. 
( b )  Perimeter as a function of cross-sectional area (Moreno et al. 1970, figure 10). 

primarily a consequence of the way the elastin and collagen fibres are linked in the wall: 
at transmural pressures below about 13 kN m--2 most of the stress is borne by the elastin 
fibres (nonlinear material of Young’s modulus E w 300-800 kN m--2: Carbon, Dain- 
auskas & Clark 1962) while at  higher values of @tm the collagen fibres ( E  x lo6 kN m--2: 
Benedict, Walker & Harris 1968) become fully extended and increasingly bear the 
stress. 

However, when the transmural pressure of an arteryis reduced below about 2kNm-2, 
for example by the inflation of a cuff around a limb or by the tightening of a tourniquet, 
the cross-sectional shape changes, becoming increasingly elliptical, and the distensi- 
bility also increases. At large negative (i.e. compressive) transmural pressures the cross- 
section is collapsed into a dumb-bell shape (cf. figure.1) whose inner area is more-or- 
less completely occluded by corrugations on the endothelial cells. The distensibility 
has once more become very low because negative cross-sectional areas are impossible. 

The elastic properties of systemic arteries a t  small or negative transmural pressures 
have not been extensively studied because such pressures are not met in normal physio- 
logical conditions. In  veins, however, small and negative transmural pressures are 
commonly experienced, and collapsed veins occur normally, for example in a raised 
arm. The mean internal pressure in large veins at  the level of the heart is about 0.7 kN 
m-2, so at that level the transmural pressure is just positive. In  the foot the internal 
pressure may therefore be above 10 kN m--2 and @tm will also be large, but in any vein 
above the level of the heart the transmural pressure normally beomes subatmospheric 
and the vessel collapses. The pressure external to veins in the limbs can be increased 
by muscular action, thereby preventing too great a distension of veins well below the 
heart, but it cannot be reduced to prevent collapse. (This is not true for veins within the 
skull, which is a constant-volume chamber; a reduction in blood-vessel volume gen- 
erates a negative external pressure, preventing further collapse.) 

Figure 1 (a) shows the cross-sectional area of an excised segment of the vena cava of a 
dog, plotted against transmural pressure (from Moreno et al. 1970). At transmural 
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pressures greater than about 1.5 kN m--2 the cross-section of the vein is circular, and the 
wall is very stiff: stiffer in fact than arteries at  the same @tm, despite the fact that the 
wall is much thinner, because the collagen within it becomes fully extended at  lower 
transmural pressure than in arteries. Changes in cross-sectional area are accompanied 
by corresponding changes in perimeter (Attinger 1969). As fitrn is reduced from 1.5 to 
1.0 kN m--2, the vessel still remains circular, but becomes somewhat more distensible, 
presumably because the elastin in the wall takes over from the collagen. When #tm falls 
below about 1.0 kN m--2, the vessel becomes elliptical, the area falls more rapidly and 
the distensibility rises. The perimeter also continues to fall, although no longer as the 
square root of area, and it is this reduction in perimeter, not the change in cross- 
sectional shape, which makes the larger contribution to the reduction in area (and 
hence to the rise in distensibility) at  least while @tm exceeds about 0.5 kN m--2. AS @tm 

falls below this value, however, the change in shape becomes more marked, and makes 
an increasing contribution to the reduction in area. The distensibility has a maximum 
when @tm is slightly below 0.5 kN m-B: from then on it falls, because it becomes 
increasingly difficult to bend the vessel wall at its points of maximum curvature. When 
fitm has reached a negative value somewhat below - 1.0 kN m-2, the vessel is almost 
completely collapsed, and the distensibility is very low. Qualitatively similar curves 
are obtained for pulmonary arteries (Attinger 1969)) which have walls whose thickness 
is intermediate between those of systemic arteries and veins; they normally experience 
a mean transmural pressure of about 2 kN m-2 and, in rabbits at least, are known to 
have elliptical cross-sections (Car0 1965). Similar results are expected in systemic 
arteries, but we know of no experiments in which they have been subjected to negative 
transmural pressures, since these do not normally occur. 

It is instructive to compare the pressure-area curve of a vein with that of a rubber 
tube, because fluid-mechanical experiments are commonly performed with these in the 
laboratory. The comparison is shown in figure 1 (a ) ,  for a rubber tube whose internal 
diameter at  @tm = 1.0 kN m-2 and whose wall thickness-to-diameter ratio were chosen 
to be close to those of a canine vena cava. The rubber tube remains circular until the 
transmural pressure falls almost to zero, then becomes elliptical and later dumb-bell 
shaped like a vein. However, during collapse, the perimeter of the rubber tube remains 
almost constant (figure 1 b ) ,  and the area change is associated solely with a change of 
shape. Furthermore the maximum rate of change of area occurs at a negative value of 
@tm (about - 0.25 kN m--2), whereas that for a vein occurs at a positive value. It can 
also be seen that the slope of the graph in figure 1 (a )  changes much less abruptly for a 
vein than for a rubber tube, because of the continuing change in perimeter. The reason 
for this difference in elastic properties lies in the fact that the rubber is much more 
resistant to stretch: its Young’s modulus is about 2.1 x 103 kN m--2, while that of a 
vein is about 40 times smaller. 

It is the purpose of this paper to investigate some of the fluid-mechanical conse- 
quences of the fact that blood vessels (and rubber tubes) collapse when the transmural 
pressure becomes small or negative. It will be convenient throughout to think in terms 
of a particular experiment (figure 2) designed both to illustrate the behaviour of veins 
and to model the situation in an artery constricted by a blood-pressure-measuring cuff 
(Conrad 1969; Katz, Chen & Moreno 1969). A segment of flexible tube is supported 
between two lengths of rigid tube and is contained in a chamber whose pressure 8, can 
be given any chosen value. The upstream and downstream pressures in the rigid tubes 

10-2 
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FIUURE 2. Experimental arrangement for studying flow in a collapsible tube. 
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FIUURE 3. (a) The pressure drop along the tube as a function of flow rate for fixed downstream 
resistance and external pressure (Conrad 1969, figure 4 4 .  (b) Corresponding cross-sections : 
1, zero flow; 2, small flow; 3, 4, larger flows; 5 ,  flow so large that tube hams become circular. 

(9, and j3z) can also be independently controlled. The flow rate Q^ is measured. The 
results to be described are achieved when the downstream resistance (figure 2) is fixed, 
when @c is fixed and when Q̂  is varied by adjusting the up:tream resistance. They are 
shown as a graph of pressure drop - @2 against flow rate Q (figure 3) and fall into three 
distinct categories. 

(i) When Q^ is sufficiently large for ij2 to exceed &, the pressure everywhere in the 
collapsible segment exceeds f j C ,  and the tube remains almost circular; the flow is 
everywhere Poiseuille flow, so - @2 is proportional to Q,  with an almost constant 
resistance (segment I of figure 3). 

(ii) When 8 is reduced below a certain critical value, the downstream pressure 
becomes smaller than the chamber pressure. Thus, for a very small further decrease in 
flow rate, the transmural pressure a t  the downstream end of the collapsible segment 
becomes negative, and the cross-section begins to change shape and to collapse. The 
cross-sectional area falls rapidly as the transmural pressure falls, because of the large 
distensibility (figure 1 a) ,  while the flow resistance rises rapidly and the pressure drop 
required to maintain the (gradually falling) flow rate also rises dramatically (segment 
I1 of figure 3). If the downstream resistance is changed during this phase such that 

very little change in flow rate is observed. However, if 

h 

varies independently of 
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$c is varied instead, the degree to which the tube is collapsed also varies, 2nd the flow 
rate changes accordingly. In  fact, during such manoeuvres the flow rate Q is approxi- 
mately proportional to $I - $,, not $I - f j 2 .  In  many experiments, self-excited oscilla- 
tions in area and flow rate are found to develop during this phase, even when the height 
of the upstream reservoir, the upstream and downstream resistances and the chamber 
pressure are held fixed. It is oscillations such as these which are thought to be respon- 
sible for the Korotkoff sounds, heard when the arteries in the arm are partially occluded 
by an inflated cuff, and employed in measurement of blood pressure. In  large arteries, 
and in many of the quoted experiments, the mean Reynolds number of the flow is large, 
and the mechanism for the generation of the oscillations (which is not well understood) 
is unlikely to involve viscosity as a primary factor. However, no oscillations are 
observed if the Reynolds number is very small (Fung & Sobin 1972), when viscosity 
must be important. 

< $,J, its cross-section has a 
rather rigid dumb-bell configuration, and as the flow rate is reduced still further, no 
further change in cross-section occurs, the resistance once more becoming constant, at  
a value 10-100 times higher than that before collapse (segment I11 of figure 3). 

It is hoped subsequently to develop the theory for unsteady flow, and to predict a 
value of the Reynolds number above which oscillations can occur. However, in this 
paper we restrict consideration to steady flow at fairly low Reynolds numbers, and our 
results will be directly relevant only to quasi-steady flow in fairly small blood vessels 
undergoing compression. 

The analysis is based on lubrication theory and requires that the cross-sectional area 
varies slowly with longitudinal distance. The effect of inertia is included as a perturba- 
tion to the basic lubrication theory solution, and is included because it is not negligible 
in the experiments and without inertia self-excited oscillations cannot develop. 

The basic solution was first given, and applied to tubes of circular cross-section, by 
Rubinow & Keller (1972). They showed that the flow rate s and the local pressure 
gradient d$/d$? are related by an equation of the form 

(iii) Finally, when the whole segment has collapsed 

A 

Q = -  0- d$ld% (1.2) 

where rs is the conductance, which depends on the cross-sectional area (as deduced from 
lubrication theory) and hence, from data such as that of figure 1 (a) ,  on the transmural 
pressure $tm. Now $tm = @ - $,, where $ is the internal pressure, and fiC the external 
pressure (assumed constant), and 6 is independent of x. Thus, if L is the distance 
between the upstream station where 9 = 9, and the downstream st,ation where $ = &, 
integration of (1.2) gives 

If $2 > $,, will be fairly large and more or less independent of @ (because the distensi- 
bility is small), so Q will be approximately proportional to @, - fl2. On the other hand, 
if $2 < &, rs will be very small for values of $ less than about $,, and (1.3) can be 
approximately replaced by 

A 

s M ; J $ 4 h - $ c ) d $ ,  

which is independent of 8%. This is the explanation of the steady experimental results 
described above. 
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The present work extends that of Rubinow & Keller (1972) in four ways. First, we 
consider tubes of elliptic cross-section, in order more accurately to model their col- 
lapse. This model is incorrect when the cross-section becomes dumb-bell shaped and its 
area very small, but the measured pressure-area relation is rather uncertain then 
anyway, and a better model would not make the predictions of conductance (which is 
very low in these circumstances) more accurate. Flaherty, Keller & Rubinow (1972) 
computed the shape and conductance B of a buckled sylindrical tube, uniform along its 
length. Second, we include to first order the effects of inertia, as was done for rigid 
circular tubes by Manton (1971) as a perturbation to lubrication theory, and by Lee & 
Fung (1  970) numerically. Hall (1  974) considered the unsteady flow in a slowly varying 
rigid tube of small eccentricity when a pulsatile pressure difference is applied across its 
ends. Third, we do not restrict attention to uniform external pressure %, but calculate 
the variation in internal pressure, fluid velocity and tube cross-sectional area when the 
external pressure resembles that applied by a cuff of finite length (see figure 8 below). 
Fourth, the calculations of Rubinow & Keller (1972) did not cover the experiment 
described above in which the downstream resistance is held constant. 0:r results do 
extend to this case and in fact they are found to predict multiple-valued Q-A@ curves 
like that of figure 3. Like all the quoted authors, we take blood to be a homogeneous 
and Newtonian fluid, which is a good approximation in vessels of diameter greater 
than 100 pm, in which the shear rate exceeds 100 s-1 (Whitmore 1968). 

2. Lubrication theory and the effect of inertia 
In  steady conditions the shape of the tube does not change with time, and the rela- 

tionship between the local pressure gradient and flow in an arbitrary slowly varying 
elliptical tube can be calculated independently of the pressure-area relation. 

We consider steady, viscous, incompressible flow through a slowly varying elliptical 
tube of length L defined in Cartesian co-ordinates (Lz, a,y, a,z) by 

where a, is a characteristic tube radius and a, a and a, b are the semi-major and semi- 
minor axes of the elliptical cross-section. The use of lubrication theory requires that 

8 = a,/L < 1 (2.2) 

while the Reynolds number R = U, ao/v remains O( 1 )  as 8 -+ 0; V, is a scale for the axial 
velocity component. The velocity field Q is scaled such that each dimensionless com- 
ponent is 0 ( 1 ) ,  and is taken to be 

Q = U,(U, E?J,€W) 

with pressure 

It is convenient to work in a co-ordinate system in which the tube cross-section does 
not. vary with x. Accordingly we introduce new transverse co-ordinates 

7 = y / a ( x ) ,  5 = ./w 
so that (2.1) becomes ? p + c ; 2 = 1 ,  O < x < l .  (2.4) 
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The full equations of motion are the continuity equation 

1 1  
a b e  

Du+-v,+-w = 0,  

the x-momentum equation 

279 

the y-momentum equation 

and the x-momentum equation 

a a' a b' a 
ax a a7 b a[ 

where D=---r---C- 

and a prime means d /dx .  The boundary conditions are simply u = v = w = 0 on the 
wall (2 .4 ) .  

We solve the problem as a power series in e, on the assumption that R = O(1) .  
Thus we take 

u = u,+su,+s2u,+ ..., 

with similar expressions for v, w andp. The leading terms in (2 .7 )  and (2 .8 )  show that 
po  is a function only of x, and the leading term of (2 .6 )  (the equation for unidirectional 
motion) gives 

a2b2 
uo(x, 79 5 )  = 2(a2 +b2) G,(x) ( 1  - r2 - C2), 

where G,(x) = - dp,/dx. This is the elliptical-tube version of Poiseuille flow. For given 
functions a(x) and b ( x ) ,  Go is determined by the condition that the volume flow rate is 
independent of x. If U, is defined as the average velocity of the flow when the tube 
cross-section 8 is a circle of radius a,, and if the volume flow rate is non-dimensionalized 
with respect to aiU,, we have 

Hence 

and 

Go = 4(a2 + b2)/a3b3 

u, = ( 2 / a b ) ( 1 - 7 2 - [ 2 ) .  

(2 .9 )  

(2 .10)  

This is the basic lubrication theory solution, leading to a value for the conductance IT 
[equation (1.2)] of n 6 3 8 3  

GiiGGj- 
In  order to determine the next approximation to u and p it is necessary to calculate 



2 80 R. Wild, T .  J .  Pedley and D.  8. Riley 

the leading terms vo and wo of the expansions for the secondary velocities. Equations 
(2.7) and (2.8) require that these quantities satisfy 

and (2.5) and (2.10) imply 

1 1 2(ab)’ 
a2b2 

;wos+i;wo5 = - 

The solution which satisfies the boundary conditions is 

(2.11) 
2a‘ 2b‘ 
ab  ab  

vo =-q(l--q2-<2), wo =--gl-?p-p). 

We note that the streamlines of these secondary motions are the same as those of 
stagnation-point flow as long as a’ and b‘ have opposite signs, since 

This represents flow out along the major axis and inwards along the minor axis when 
a is increasing and b decreasing, and vice versa. When a’ and b’ have the same sign, 
however, the secondary streamlines are those of asource or sink on the axis y = z = 0. 

The next term in the pressure expansion, p,, is also independent of 7 and c, from (2.7) 
and (2.8), so that u1 satisfies 

where G,(x) = - dp,/dx. The solution of this which satisfies the boundary condition is 

~1 = R( 1 -q2  - <’) (co + clv2 + c2q4 + ~3 c2 + ~4 c 4 +  c5q’c2),  (2.12) 

where 

and 

+ 4 3 3  + 608a2 + 2238S4 + 608P + 338*), 
G, a2b2 

= 2R(a2 + b2) 
C 

~1 = - 4 6 6  + 850S2 + 107413~+ 238P + 128’), 

c2 = +a/3(33+4482+384), 

c 4  = + 43(3 + 4482 + 3384), 

c5 = 4a/3(3 + 3482+ 384) 

~3 = -a( 12 + 23M2 + 1074S4 + 850P + 6689, 

2b2A‘ 
a = 45A3/3( 1 + 15a2 + 15d4 + B6)’ 

/3 = 1+682+84, 8 = b/a, A = ab. 

G, is again determined from the volume flux condition, in the form 

u1 dq dc  = 0,  ss 
which unexpectedly simplifies to 

G,(x) = - 2RA‘/A3. 

(2.13), (2.14) 

(2.15) 
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FIGURE 4. The variation of velocity along the centre-line of the rigid tube for three relationships 
between area and shape (represented by C). -- -, zeroth-order solution (dZ = 01; -, with 
first-order inertial correction (€8 = 1). 

X 

Therefore G, depends on the area change but not on the cross-sectional shape of the 
tube. This part of the solution has been expressed in terms of two new variables: 6, 
which is a measure of the eccentricity of the ellipse and always lies between 0 and 1, 
and A ,  the dimensionless cross-sectional area. In  the application to elastic tubes it is 
found convenient to work with these quantities and a mean diameter, represented by 

C = a+b. (2.16) 

The effect of inertia on the lubrication solution is expressed by the perturbations 
and €GI to the velocity and pressure gradient. Each term is in fact proportional to 

ER, which is the important small parameter. To see their effect, we look at the velocities 
and pressure drop in a tube whose elliptical cross-sectidn vanes in a given way. The 
cross-sectional area is taken to vary as 

A = 1--x4(1-x)2, (2.17) 

so that the minimum area of 4 is achieved at x = 8. The shape of the tube is fixed by 
specifying the relationship between a and b, i.e. between C and 6. Three different 
relationships are used, as follows: 

(i) Constant perimeter (as for rubber tubes) equal to 27r, so that 

(ii) C = 2; the perimeter varies by only a small amount when C takes this constant 
value, equal to  its value when the tube is circular with a = 1, and this condition is much 
easier to apply than that of constant perimeter. The difference between the results 
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X 

FIGURE 5. The variation of pressure along the centre-linc of the rigid tube. ---, zeroth-order 
solution (ER = 0); - , with first-order inertial correction (el3 = 1) .  

obt'ained from this and from (i) turns out to be small, and (ii) is used in place of (i) in the 
rest of the paper. 

(iii) Perimeter decreasing as area decreases; in view of the limited data, a simple 
model in which the length of the major axis remains constant as A decreases is chosen 
to give a qualitative indication of the behaviour of blood vessels. We thus choose 

C = 1 + 6 = 1 + A .  

Results are presented in three ways: the variation of u and p along the centre-line of 
the tube (figures 4 and 5) and the variation of u1 across the semi-major and semi-minor 
axes (figure 6). The constriction in each case accelerates the flow along the centre-line 
(figure 4) to a maximum velocity which is at  2 = $ when inertia is negligible (dl = 0, 
broken curve), but which increases and occurs further downstream as inertia becomes 
more important (the solid curves are for sR = I). The maximum pressure gradient also 
increases as inertia becomes more important (figure 5 ) ,  but occurs further upstream 
than in the absence of inertia, where A' < 0 in (2.15). It is interesting to note that the 
presence of inertia (mediated by the secondary motions) causes a deceleration of the 
flow in the centre of the tube as A decreases, but an acceleration at  the edge on both the 
major and the minor axis (figure 6) .  The reverse is true as A increases again. This is in 
marked contrast with inviscid flow, where the secondary motions cause an acceleration 
near the wall on the major axis (as A increases) and a deceleration on the minor axis 
(Sobey 1976). These results also show that there is only a small difference between the 
constant-perimeter case and the constant-C case, which wiIl therefore be used in its 
place in future. In  the case of constant major axis (C = 1 + S), the perimeter for a given 
area is smaller than in the other cases. Thus the changes in the velocity and the pressure 



steady $ow in collapsible tubes 283 

Major axis x 

0.6 

0.3 

0 0.5 1.0 
Minor axis x 4 a q  

1.0 - - - -  ;B 0.3 0 0.5 1.0 

X )  a7 

x4 

p/* ;,f& ~ ;3g* 
2 ; -0.1 !:yo.6. 
4 -0.3 

0-3 I 

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 

b’l br! brl 
(a )  (6) (C) 

FIGURE 6. First-order velocity profiles at three stations along the semi-major and semi-minor 
axes of the rigid tube. (a) C = 2. (b) Constant perimeter. (c) C = 1 +a. 

drop are also significantly smaller, because the cross-section is more nearly circular at 
each value of A .  In  this case wo = 0 [equation (2.1 l)] and wo has the same sign as b’c: the 
secondary streamlines are straight, and parallel to the minor axis. 

3. Application to collapsible tubes 
In this application the cross-sectional area of the tube at  any value of x depends on 

the local transmural pressure in the manner shown in figure 1 (a )  and represented by 
the equation 

$tm = P,F(A) ,  (3.1) 

where Po is a dimensional scaling factor and F is a dimensionless function of A .  As 
before, the area is made dimensionless by dividing by na;, and now we choose a, to be 
the radius of the tube at the transition between a circular and elliptical cross-section 
(i.e. the tube is circular for A 2 1,  elliptical for A < 1). We then fix Po as the value of 
j3tm when the tube is just circular, i.e. by requiring that F( 1) = 1.  This elastic pressure 
scale is different from the fluid-dynamic pressure scale used above [equation (2.3)], so 
we introduce the dimensionless parameter 

s = ~ R F ~ / ~ u ;  = naiP,l&j, (3.2) 

where 6 is the flow rate through the tube. Thus, for a given tube with given elastic 
properties, S can also be regarded as an inverse measure of flow rate. It we stick to the 
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Comparison of the function P ( A )  with the relationship between transmural pressure 
and area for the canine vena cava (as shown in figwe 1 a). 

0' 0.25 0.5 0.75 1 
X 

FIGURE 8. The external pressure pc  for an inflated cuff. 
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convention that all pressures are non-dimensionalized with respect to pU;/sR,  then 

(3 .1~)  (3.1) becomes 
p t m  = XP(A). 

The experimental situation we are attempting to model is that of a finite length of 
collapsible tube with external pressure ( p U i / s R ) p , ( x )  given for all x and with internal 
pressure given at the entrance, x = 0. Clearly then, the distribution of areawith distance 
along the tube, and hence the relationship between the pressure drop and the flow rate 
down the tube, will depend on the transmural pressure at  x = 0. Thus another dimen- 
sionless parameter on which the flow will depend is 

this will determine the initial cross-sectional area A(O), from ( 3 . 1 ~ ) .  In  computing the 
results, it is more convenient to specify A(O), and derivept,(O) from (3.1 a). 

For a given flow rate and a given distribution of area, the pressure distribution inside 
the tube is determined from (2 .9)  and (2 .15) .  For given distributions of external and 
internal pressure, the cross-sectional area is determined from (3.1 a). Combining the 
two and using (2.16), we obtain the following ordinary differential equation for A ( x ) :  

dA dp, 4 ( C 2 - 2 A )  2 s R d A  +-- 
ax  dx A3 A3 ax’ 

EF’ (A) -  = (3.3) 

This is solved (by simple numerical integration) subject to the initial condition that 
A(0)  is given. 

The elastic properties of the tube are represented by the function P ( A ) .  This is 
specified to fit the experimental curve for veins given in figure 1 (a), in the form 

1 ( 3 A  - 1 )  
P ( A )  = [ 0-34(38  - 1) + 0*01(3A - l ) 5 +  0.1 ~ e-6A A2 (3.4)  

Both curves are plotted in figure 7. The first two terms within the bracket are of the 
form specified by Rubinow & Keller (1972),  and the last term is added to ensure that 
d A / d x  remains finite as A -+ 0 in (3 .3 ) ,  for otherwise negative areas are predicted and 
the model breaks down. Note that the area has reduced to one-third of its reference 
value ( A  = 9) when the transmural pressure is zero, which is appropriate for veins but 
not for rubber tubes. 

The external pressure p, could be taken to be constant. Instead we choose a form 
representative of a cuff inflated over part of the length: 

pe(x)  = X T [ l  -exp{l- 1 / 4 ( ~ - 4 ) ~ ) ] .  (3.5) 

This is plotted in figure 8; pc is zero at the two ends of the collapsible segment (z = 0 
and 1)  and takes the maximum value XT at the midpoint x = 4. This corresponds 
to a dimensional cuff pressure of 9 = p U i S T / s R  = P, T [see (3.2)]. Thus, if the flow 
rateisvaried in agiven tube with a given cuff pressure, T remains constant as S is varied. 

The relationship between the area and the shape of the cross-section must be speci- 
fied, as in the last section. We shall present results for two cases: one in which C = 2 
when A Q 1 (case (ii) above), which has been shown to give results close to those for 
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Vein a, (om) L (om) U ,  (cms-l) R €R 
Inferior vena cava 0.5 30 15-40 400-1000 7-17 
Medium-sized vein 0.2 2 1-10 10-100 1-10 
Venule 0.002 0.15 0.2-0.5 0.02-0.05 0.0003-0.0007 

TABLE 1. Values of parameters in veins (Caro, Pedley & Seed 1974). 

constant perimeter, and one in which the major axis of the ellipse remains constant 
and the perimeter decreases during collapse [case (iii) above], i.e. in which 

2A) for A 3 1 (circular), 
1 + A  for A < 1 (elliptical). 

C = (  

Integration of (3.3) can proceed when the following parameters have been specified: 
€8, S, T and A (0). The last of these determines ptm( 0) from (3.1 a) ,  and this is the same 
as p(0 )  because p J 0 )  = 0. Table 1 gives the radii, lengths, mean velocities, Reynolds 
numbers and values of ER (where E is taken to be the radius-length ratio of the whole 
vein) for three typical canine veins of different sizes. We can see that the present 
theory is likely to be inapplicable to large veins, but applicable to medium-sized and 
small veins where ER remains below 2. The pressure-area relation given by (3.4) (and 
figure 7) was derived for large veins, and is therefore unlikely to be completely accurate 
when applied to small veins, even when scaled with a different value of A,, but no 
further information is available. According to figure 7, Po is close to 1.0 kN m--2, and we 
therefore choose this to be its value. The numbers given in table 1 then show that the 
parameter S [equation (3.2)] can vary over a very wide range, from about 30 to about 
lo4. The results presented below do not cover such a wide range, because they prove to 
be fairly insensitive to S when S is large since the hydrodynamic pressure drop is then 
small compared with that required to make a significant change in tube area. T is taken 
to vary between 0 and 5, a t  which value the maximum cuff pressure is 5P,. The initial 
area A(0)  is taken in t'urn to be greater than, equal to and less than the area (unity) at 
which the cross-section begins to become elliptical. 

In  figure 9 we plot the cross-sectional area A as a function of distance z along the 
tube for various values of the flow-rate parameter S. The solid curves are with inertia 
(ER = 1) and the broken curves without (€22 = 0). The external pressure is constant 
(T = 0.5) and the initial area is also constant (A(0)  = 1-1) .  Figure 9(a)  shows the case 
of fixed major axis and variable perimeter [equations (3.6)] and figure 9 ( b )  shows the 
case of approximately constant perimeter (C = 2 when A < 1 )  for comparison. The 
main feature of the results is that there is a critical flow rate (proportional to S-1) above 
which the area becomes very small just downstream of the peak external pressure, and 
does not recover further downstream where the external pressure returns to zero. The 
critical value of 8, say So, is about 30 from figure 9 (a)  and about 40 from figure 9 ( b ) .  
The results are clearly very sensitive to the presence of inertia near this critical flow 
rate, and predictions which ignore it are likely to be in error. The present predictions are 
also inaccurate for ER as large as 1, when S N So, as can be seen from the large differ- 
ence between the curves for zero and non-zero inertia, but they do indicate the quali- 
tative effect of inertia. Error is also introduced by the rapid rate of change of A with z, 
which indicates that the effective value of E may not be very small. 
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FIGVRE 9. Cross-sectional area of the elastic tube as a function of z for various values of the 
flow-rate parameter S. C = 2JA for A 2 1. (a) C = 1 + A  for A < 1. ( b )  C = 2 for A < 1. 
_ _ _  , zeroth-order solution (eR = 0); - , with first-order inertial correction (eR = 1). 

It is clear that the pressure drop required for a given flow rate (i.e. the resistance) 
will be significantly greater for S < So than for S > So. This is confirmed by figure 10, 
in which the pressure is plotted against x for the cases shown in figure 9. 

In  figure 11,  the area A (  1)  at the downstream end of the tube is plotted against the 
external pressure T, again for various values of S and for sR = 0 , l .  This indicates how 
the critical value So increases with T, so that smaller and smaller flow rates are required 
to generate collapse as T increases. Once more we see that the effect of inertia is small 
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FIGURE 10. The variation of pressure along the centre-line of the elastic tube for various values 
of S. C = 2JA for A 2 1 .  (a) C = 1 + A  for A < 1. ( b )  C = 2 for A < 1. ---, eR = 0 ;  
-, eR = 1. 
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FIGURE 11. Cross-sectional area A(l )  at the downstream end of the tube as a function of the 
external pressure T. Values for 8 are as for figures 9 and 10. C = 24A for A 3 1 ; C = 1 + A  for 
A < 1. - - -, ER = 0; -, ER = 1 ; points on the steep gradient have not been computed. 
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FIGURE 12. Cross-sectionil area A(1) a t  the downstream end of the tube aa a function of the 
initial area A(0) .  Values of S are as for figures 9 and 10. C = 2JA for A 3 1; C = 1 + A  for 
A < 1 .  ---, ER = 0; - , ER = 1. 
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FIGURE 13 (a). For legend see facing page. 

except when S is close to So. In  figure 12 the same quantity is plotted against the 
initial area A(O), for a given value of T .  Both these figures consider only the case of 
constant major axis. 

I n  order to make some comparisons with the experiments described in figure %, we 
wish to plot the dimensional pressure drop @1 - $2 as a function of the flow rate Q for 
given values of the external pressure $c and for given conditions upstream or down- 
st,ream. I n  dimensionless terms, this requires that we plot (pl -p2)/S = (@, - $,)/Po 
against S-l for fixed T .  Our results for three values of T in conditions where the up- 
stream area A ( 0 )  and hence the upstream pressure @(O) are held constant are plotted 
in figure 13 (a) .  For these curves, A ( 0 )  = 1.1 and the length of the major axis is held 
constant, so t.hat the perimeter decreases with area. The point where the curve grad- 
ient changes rapidly corresponds approximately to the position of the critical flow rate 
Sil shown in figure 11 ; this indicates that increases in the driving pressure above a 
certain critical value do not further increase the flow rate. 

These curves are clearly the same shape as those shown in figures 13 ( b )  and ( c ) ,  which 
are redrawn from the work of Brecher (1962) and illustrate his results from experiments 
on an excised segment of a canine superior vena cava (figure 13c)  and on a rubber tube 
of comparable dimensions (figure 13 b ) .  They are also qualitatively similar to  the theo- 
retical results obtained by Rubinow & Keller (1972). I n  order to make quantitative 
comparisons, we need to estimate the values of the dimensionless constants for Bre- 
cher’s experiments. He does not give all the necessary data, but we can take the radius 
of the vena cava to be about 0.5 cm (table 1) and suppose a reasonable value of E to be 
0.1 (the axial length scale is thus taken to be 5 cm: shorter than the vessel length but 
possibly an overestimate for a typical length scale during vessel collapse). A flow rate 
of 4 cms s-l (figure 13c)  means an average velocity of 5 cm s-l, so when Y = 4 x 
m2 s-l, as for blood, the Reynolds number R will be approximately 64 and ER M 6.4. 
Furthermore, if we take Po = 1 kN m-2, as for the vena cava in the experiments of 
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FIGURE 13. (a) Predicted pressure drop along the tube as a function of the flow rate S-l for 
constant upstream area and pressure: - - -, ER = 0; ---, ER = 1. ( b )  Measured pressure drop 
along a collapsible rubber tube as a function of the flow rate for fixed inlet pressure and 
external pressure $jc (measurements of Brecher 1952, as modified by Rubinow & Keller 1972, 
figure 11) .  (c) Measured pressure drop along the superior vena c a m  of a dog as a function of the 
flow rate; $jl is the pressure in the jugular vein (upstream from the superior w e m  cam) and $jja is 
the pressure applied to the peripheral end (measurements of Brecher 1952, as modified by 
Rubinow & Keller 1972, figure 10). 

Moreno et al. (1970) (figure I),  the parameter S is seen to be about 2500. The pressure 
drops in figure 13(c) of 0-60 cm H,O (i.e. 0-5 kN m-,) are equivalent to values of 
(p1  -p2 ) /S  of 0-5. Thus the curve of figure 13 (c) has a similar abscissa to that of figure 
13 (a) ,  but is squashed down into very small values of the ordinate. The experimental 
values of T are likely to have been in the neighbourhood of 2 as presumably the external 
pressure was associated with respiration. 

A similar conclusion is reached in the case of Brecher’s rubber-tube experiments 
(figure 13b). The value of Po was presumably smaller in this case (Po x 0.2 kN m-2 from 
figure 1,  or Po N” 0.5 kN m-2 from figure 1 of Katz et al. 1969), but the flow rates were 
larger (6 om3 s-l) and Swill therefore have been nearly as large as for the vena cava. The 
peak in the flow rate on figure 13 ( b )  may be explained by the fact that the extent, and 
hence the resistance, of the collapsed segment increases when @2 is reduced below the 
value at  which collapse begins but is still greater than the value (close to &) at which its 
influence is no longer felt. 
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FIGURE 14. (a) Predicted pressure drop along the tube as a function of the flow rate S-1 for 
constant downstream resistance. The curves are plotted for T as in figure 13 (a)  : - - -, BR = 0 ;  
- , BR = &. (6) Measured pressure drop along a collapsible tube as a function of the flow rate 
for constant downstream resistance. The curves are plotted for six external pressures as shown. 
(Redrawn with curves smoothed from Conrad 1969, figure 5). 
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The discrepancy in scale between the theoretical and experimental curves must be 
principally a consequence of the fact that the theory has been developed for eR < 1, 
whilst in the experiments ER w 6. Thus the viscous pressure drops in the experiments 
must have been much less than the dynamic pressure changes experienced by the flow 
as it passed through the constriction, and the theory cannot be relevant. The fact 
that the curves have qualitatively the same shape is a consequence of the fact that the 
constriction causes an enhanced pressure drop at  high Reynolds number as well as at 
low Reynolds number. The mechanism is of course different, probably being associated 
with separation of the flow from the constriction, rather than enhancedviscous stresses. 
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If the dynamic pressure drop, instead of the viscous, were used in the non-dimensional- 
ization, the corresponding values of S would be reduced by a factor ER, which reduces 
the estimate of 2500 above to about 400, and therefore puts the experiments and 
theory on a similar scale. 

In figure 14 (a) ,  we plot the same quantities a8 in figure 13 (a),  but for a different 
experiment. This time we keep the downstream resistance R2 constant as in the experi- 
ments of Conrad (1969) which led to figure 3. Constant R, means a constant ratio 
between i j 2  and I$ or (in dimensionless terms) a constant value of 

This means that the one-point boundary condition to be applied to (3.3) is that A(1) is 
given by 

for zero external pressure at  the downstream end. The higher the flow rate, the higher 
is 8-1, and also A( i ) ,  i.e. the collapse is less; integration of (3.3) will determine A(0)  and 
hence pl .  In  figure 14(a), the constant value of p 2  was taken to be 60, which, when 
c = 0.07 and a, = 0.63 cm, corresponds to a downstream resistance of 91 N m-2 per 
cm3 s-1, i.e. 6.9 mm Hg per 10 em3 s-1, which is comparable with the smallest of the 
downstream resistances used by Conrad (figure 3 4 .  The ‘inertial’ curves of figure 
l4(a) are for eR  = 0.5. The main features of this figure are that A$ is amultiple-valued 
function of 6 just as in the experiments, and that this phenomenon is independent of 
the presence of inertia. As in figure 13 (a )  however, the quantitative comparison is poor 
because of the large value of S appropriate to the experiments; in Conrad’s experiment 
(a, = 0.63 cm, Po M 0.5 kN m-2, E = 0.07), a flow rate of 2.5 om3 s-l (figure 14b)  corres- 
ponds to S z lo4. Once more the discrepancy can be attributed to the dominance of the 
dynamic pressure drop over the viscous pressure drop in Conrad’s high Reynolds 
number experiments ( e R  z 8.1). We know ofno experiments that have been performed 
either on small veins in situ or on fairly low Reynolds number flow in collapsible tubes. 

When self-excited oscillations occur in collapsible tubes, they do so in the descending 
section of the curve of pressure drop against flow rate (figure 14b). Therefore, in ex- 
tending the present analysis to the unsteady case, we are currently concentrating on 
flow rates which fall within the corresponding section of the curves in figure 14(a). 
The aim of this unsteady flow anslysis is to predict a critical value of R above which 
oscillations can occur. 

m4(1)1 = P2P 

R. W. and T. J.P. are grateful to the S.R.C. for financial support. 
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